
mallocd: designing a garbage-free nosql data store
igor

2018-04-01

abstract

at bigcorp (tm) we have a lot of data. many jiggabytes
worth of data. in order to get the data fast, we need
to put it in memory. that is because memory is
faster than other forms of storage. in this paper,
we introduce a new design for a state-of-the-art, in-
memory, garbage-free, cloud-native, nosql, bare metal,
containerless, micro-service, data store.

the shift key on my keyboard is broken.

1. garbage

certain “professional” models of a particular brand
of computing device have been said, by some, to be
aestetically similar to trash cans. this comes as no
surprise, indeed, if you look at many “desktop” screens
at the office, you will see a similar pattern: the trash
can icon is empty, and the entire desktop instead has
been littered with garbage.

this is also quite similar to how modern software
operates. as the old saying goes: when you leak the
trash, you seek and thrash. garbage collectors have
been at our disposal for many years now.

before the sunset, the coffee engineers at some mi-
crosystems corporation came across a paper about
symbolic expressions and their computation by coffee
machine. after a bit of small talk, they got to work,
and eventually produced a device capable of briefly
stopping time. the garbage collector.

this stopping of time occurs when too much garbage
is produced. and when time stops in our data store,
we cannot get the data very fast.

2. go

all cool new technology is written in go. for this very
reason, we chose to use go as the foundation for our
new data store.

all cool new technology written in go has a .io top-
level domain. we tried to get approval from corporate
to purchase mallocd.io, but the request was denied.
as a result, we are currently seeking funding. if you
are an investor with $30 bucks to spare, please get in
touch.

go is as fast as c, because it was created by the fresh
prince of bell labs. except when the garbage collector
runs. go employs a “mark-and-weep” collector. this
is sometimes also referred to as a “tracing” collector,
named after the traces left by the tears rolling down
the cheeks of those who are waiting.

n.b. this is also why distributed tracing systems are
used in multi-tear architectures.

fun fact: there was a mistake in the original c pro-
gramming language that ended up costing a billion
dollars. but because the mistake was so iconic, they
ended up including it in go as well! who knew?

3. allocation

in order to create garbage, things need to be put some-
where. in the context of programming, this process is
called memory allocation.

the good old stdlib.h defines the following function

signatures:

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

malloc(3) is used for creating garbage, and free(3)
is used for collecting it. the reason you’ve never heard
of these functions is because the garbage collector
does the work for you.

freeing memory is important, because otherwise the
kernel will stop the database process and you will get
paged at an inconvenient time. as the old saying goes:
when you free your memory, you also free your mind.

4. democratizing malloc

the malloc(3) machinery for direct memory alloca-
tion allows dealing with memory directly. most con-
temporary programming languages explicitly deny
their users the opportunity to mess with arbitrary
memory locations.

what if we had a mechanism that would allow anyone
to use malloc(3)?

this is how we got the idea of mallocd. mallocd is a
stateful micro-service written in go that provides di-
rect memory access for high-performance data storage
and retrieval.

the “d” in mallocd refers to “daemon”, as this service
allows its users to harness demonic powers.

the mallocd service exposes a udp socket, allowing
any other process to allocate, access, modify, and free,
memory.

5. client

clients for mallocd can be written in any language.
you could use a command-line client that lets you
allocate memory from the comfort of your couch.

here is an example of what that would look like:

$ mallocd-client malloc 5
842350568512
$ mallocd-client write 842350568512 5 hello
$ mallocd-client read 842350568512 4
hell
$ mallocd-client free 842350568512

don’t forget to free your pointers!

6. protocol

mallocd uses a binary protocol. mainly for perfor-
mance reasons, but also so that we could create one
of those cool diagrams you see in rfcs.

the protocol exposes 4 methods: malloc, free, read,
write.

6.1 malloc

the malloc request (0x00) is used to allocate mem-
ory of len bytes. it returns a 64-bit pointer to that
memory ptr.

request:

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| 0x00 |
+-+-+-+-+-+-+-+-+
| len |
+-+-+-+-+-+-+-+-+

reply:

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| ptr |
+-+-+-+-+-+-+-+-+

these diagrams are not what they seem. what you
thought were bits are in fact bytes. we figured, since
we’re sending huge 64-bit addresses around, we might
as well make all fields 64 bits wide. it still looks really
cool though.

6.2 free

the free request (0x01) is used to free the memory
allocated at the memory location pointed at by the
pointer ptr.

request:

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| 0x01 |
+-+-+-+-+-+-+-+-+
| ptr |
+-+-+-+-+-+-+-+-+

this request has no reply. we simply assume the
udp message was received and the memory was freed
successfully.

this usually works.

6.3 read

the read request (0x02), not to be confused with
the read(2) system call, allows reading an arbitrary
chunk of memory of length len by de-referencing the
pointer ptr.

request:

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| 0x02 |
+-+-+-+-+-+-+-+-+
| ptr |
+-+-+-+-+-+-+-+-+
| len |
+-+-+-+-+-+-+-+-+

reply:

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| |
+ (len bytes) +
| |
+-+-+-+-+-+-+-+-+

this is mostly safe.

6.4 write

in order to write to any any address in the mallocd
process, the write request (0x03) is used. just like
free, this request does not have a reply.

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| 0x03 |
+-+-+-+-+-+-+-+-+
| ptr |
+-+-+-+-+-+-+-+-+
| len |
+-+-+-+-+-+-+-+-+
| |
+ (len bytes) +
| |
+-+-+-+-+-+-+-+-+

while all of our bits are very significant, we transmit
bytes in big-endian order, which is the one that just
makes sense.

7. garbage-free computing

with the boring stuff out of the way, let’s talk about
garbage-free computing.

the go runtime can be provided with a GODEBUG envi-
ronment variable that can print out information about
how much garbage a program is producing.

in order to compute without garbage, one must pre-
allocate all structs and buffers, and then re-use them.
this is precisely what mallocd does.

once allocated, no garbage collector will touch those
buffers ever again.

unfortunately the go standard library’s udp network-
ing code is not entirely garbage-free. receiving udp
datagrams results in the allocation of two structs:
syscall.SockaddrInet4 and net.UDPAddr.

we can work around this by making syscalls directly:

r1, _, e := syscall.Syscall6(
syscall.SYS_RECVFROM,
fd,
uintptr(unsafe.Pointer(&req[0])),
uintptr(len(req)),
0,
uintptr(unsafe.Pointer(&addr)),
uintptr(unsafe.Pointer(&addrSize))

)

now the only garbage produced in mallocd is memory
allocated by malloc requests.

8. manually managing memory

to allocate memory, the reflect package can be used
as usual:

t := reflect.ArrayOf(
int(len),
reflect.TypeOf(byte(0))

)
ptr := reflect.New(t).Pointer()

ptr can now be handed out for anyone to use freely.

however, that allocated memory is now at risk of being
collected. in order to prevent that from happening,
we keep a reference to it in a shared map:

p := unsafe.Pointer(uintptr(ptr))
refs[p] = nil

later, the memory can be freed by removing its refer-
ence from the map:

p := unsafe.Pointer(uintptr(ptr))
delete(refs, p)

this is a subtle way of instructing the garbage collec-
tor to run free(3) on that pointer and reclaim the
memory.

don’t forget to free your pointers!

9. results

we will be rolling out mallocd to production at big-
corp (tm) next week.

10. conclusion

mallocd is a next-gen, best-in-class, garbage-free, in-
memory, nosql datastore written in go.

it democratizes malloc by allowing anyone to mess
with memory in any language.

since it’s just memory, it’s easy to implement your
own data structures on top of mallocd.

don’t forget to free your pointers!

11. future work

other data stores provide support for scripting via
lua stored procedures. mallocd provides the ability
to write to arbitrary memory, it may be possible to
write into the stack segment in order to create and
run user-defined functions.

in order to simplify the adoption of mallocd, we want
to develop a posix-compliant drop-in replacement for
malloc(2) that can be loaded via LD_PRELOAD. it
could use a SIGSEGV signal handler to intercept mem-
ory accesses, or if that doesn’t work, we might just
make a kernel module.

references

here are a few pointers:

• 0xc42001a440
• 0xc4200cb9e0
• 0xc4201355c0

don’t forget to free them when you’re done.

	abstract
	1. garbage
	2. go
	3. allocation
	4. democratizing malloc
	5. client
	6. protocol
	6.1 malloc
	6.2 free
	6.3 read
	6.4 write

	7. garbage-free computing
	8. manually managing memory
	9. results
	10. conclusion
	11. future work
	references

